

Datenblatt

T-Serie - TH SSI

Magnetostriktive Lineare Positionssensoren

- ATEX-/UK Ex-/IECEx-/CEC-/NEC-/KCs-/CCC-/PESO-zertifiziert/Japanische Zulassung
- Dauerbetrieb im rauen industriellen Umfeld
- Druckfeste Kapselung/Explosionsgeschützt/Erhöhte Sicherheit

MESSVERFAHREN

Die absoluten, linearen Positionssensoren von Temposonics basieren auf der firmeneigenen proprietären, magnetostriktiven Technologie und erfassen Positionen zuverlässig und präzise.

Jeder der robusten Temposonics® Positionssensoren besteht aus einem ferromagnetischen Wellenleiter, einem Positionsmagneten, einem Torsions-Impulswandler und einer Sensorelektronik zur Signalaufbereitung. Der Magnet, der am bewegten Maschinenteil befestigt ist, erzeugt an seiner jeweiligen Position ein Magnetfeld auf dem Wellenleiter. Zur Positionsbestimmung wird ein kurzer Stromimpuls in den Wellenleiter geleitet, welcher ein radiales Magnetfeld erzeugt. Die kurzzeitige Interaktion beider Magnetfelder löst einen Torsionsimpuls aus, der den Wellenleiter entlangläuft. Wenn die Ultraschallwelle den Anfang des Wellenleiters erreicht, wird sie in ein elektrisches Signal umgewandelt. Die Geschwindigkeit, mit der sich die Welle ausbreitet, ist bekannt. Daher lässt sich anhand der Zeit, die zwischen dem Auslösen des Stromimpulses und dem Empfang des Rücksignals vergeht, eine exakte, lineare Positionsmessung durchführen. So entsteht ein zuverlässiges Positionsmesssystem mit hoher Genauigkeit und Wiederholbarkeit.

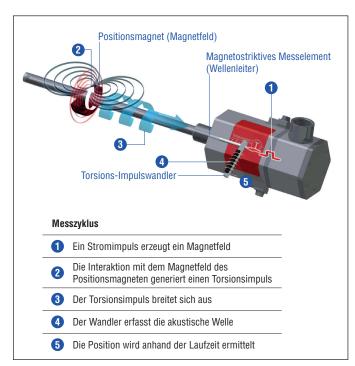


Abb. 1: Laufzeit-basiertes magnetostriktives Positionsmessprinzip

TH SENSOR

Robust, berührungslos und verschleißfrei – Temposonics® Positionssensoren sind äußerst langlebig und liefern beste Messergebnisse im rauen Umfeld von Industrieapplikationen. Die hohe Qualität des von Temposonics hergestellten Wellenleiters stellt die Grundlage für präzise Messungen dar. Der Positionsmagnet wird am beweglichen Maschinenteil befestigt und gleitet berührungslos über den Sensorstab mit dem innenliegenden Wellenleiter.

Der TH Sensor der T-Serie ist äußerst robust und daher ideal für den Dauerbetrieb unter harten industriellen Bedingungen geeignet. Die Sensoren der T-Serie sind für explosionsgefährdete Bereiche in Zone 0/1, Zone 1, Zone 2, Zone 21 und Zone 22 für Europa (ATEX), den englischen, walisischen, schottischen (UK Ex), den globalen (IECEx), den südkoreanischen (KCs), den chinesischen (CCC), den indischen (PESO) und den japanischen Markt zertifiziert sowie für Kanada (CEC) und USA (NEC) in Class I, II, III, Division 1, Division 2. Die Elektronikschnittstelle und die aktive Signalverarbeitung sind vollständig im Sensorelektronikgehäuse integriert. Der Messstab ist druckbeständig und eignet sich für die Integration in Hydraulikzylindern. Der Sensor ist unter anderem ausgelegt für Anwendungen in der petrochemischen Industrie sowie bei Anwendungen, bei denen ätzende Substanzen verwendet werden. Zudem hat der Sensor die Gehäuseschutzart IP66/IP67/IP68 (100 m für 7 Tage), IP69 und NEMA 4 (in der Ausführung Edelstahl 1.4305 (AISI 303)) bzw. NEMA 4X (in der Ausführung Edelstahl 1.4404 (AISI 316L)).

Abb. 2: Typisches Anwendungsbeispiel: Tankanlagen

TECHNISCHE DATEN

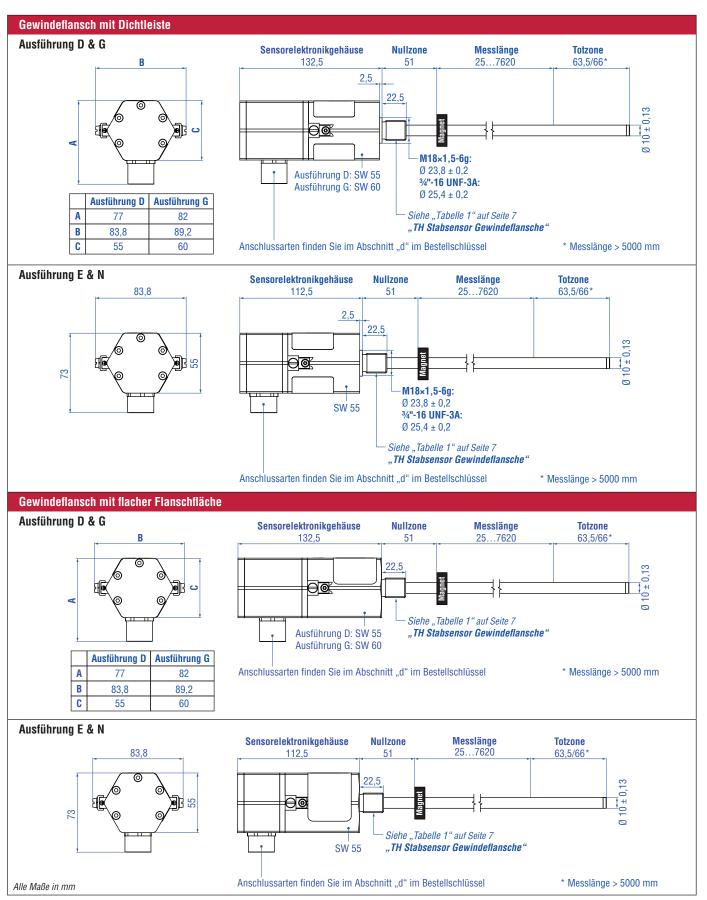
Ausgang	
Schnittstelle	SSI (Synchron Serielles Interface) – Differenztreiber nach SSI Standard (RS 422)
Datenformat	Binär- oder gray codiert, optional Parity- und Fehlerbit oder Temperatur der Sensorelektronik
Datenlänge	832 Bit
Datenübertragungsrate	70 kBaud ¹ 1 MBaud, abhängig von der Kabellänge: Kabellänge < 3 m < 50 m < 100 m < 200 m < 400 m Baudrate 1 MBd < 400 kBd < 300 kBd < 200 kBd < 100 kBd
Messgröße	Position, Differenzmessung, Geschwindigkeit, Temperatur der Sensorelektronik
Messwerte	
Auflösung	Position: 0,5 μm, 1 μm, 2 μm, 5 μm, 10 μm, 20 μm, 50 μm, 100 μm/ Geschwindigkeit über 10 Messwerte: 0,1 mm/s (bei 1 ms Zykluszeit)
Zykluszeit	Messlänge 300 mm 750 mm 1000 mm 2000 mm 5000 mm Messrate 3,7 kHz 3,0 kHz 2,3 kHz 1,2 kHz 0,5 kHz
Linearität ²	< ±0,01 % F.S. (Minimum ±40 μm)
Messwiederholgenauigkeit	< ±0,001 % F.S. (Minimum ±2,5 μm) typisch
Hysterese	< 4 μm typisch
Temperaturkoeffizient	< 15 ppm/K typisch
Betriebsbedingungen	
Betriebstemperatur	−40+75 °C
Feuchte	90 % relative Feuchte, keine Betauung
Schutzart	IP66/IP67/IP68 (100 m für 7 Tage), IP69 und NEMA 4 (in der Ausführung Edelstahl 1.4305 (AISI 303)) bzw. NEMA 4X (in der Ausführung Edelstahl 1.4404 (AISI 316L)) (wenn entsprechende Komponenten fachgerecht angeschlossen werden)
Schockprüfung	100 g/6 ms gemäß IEC 60068-2-27
Dauerschock	160 g/2 ms gemäß IEC 60068-2-27 (für Option A mit verbesserter Schockfestigkeit siehe Bestellschlüssel auf Seite 13)
Vibrationsprüfung	15 g/102000 Hz gemäß IEC 60068-2-6 (ausgenommen Resonanzstellen)
EMV-Prüfung	Elektromagnetische Störaussendung gemäß EN IEC 61000-6-3 Elektromagnetische Störfestigkeit gemäß EN IEC 61000-6-2 Die TH Sensoren erfüllen die Anforderungen der EMV-Richtlinien 2014/30/EU und UKSI 2016 Nr. 1091.
Betriebsdruck	350 bar statisch
Magnetverfahrgeschwindigkeit ³	Beliebig
Design/Material	
Sensorelektronikgehäuse	Edelstahl 1.4305 (AISI 303); Option: Edelstahl 1.4404 (AISI 316L)
Flansch	Siehe "Tabelle 1: TH Stabsensor Gewindeflansche" auf Seite 7
Sensorstab	Edelstahl 1.4306 (AISI 304L); Option: Edelstahl 1.4404 (AISI 316L)
RoHS-Konformität	Die verwendeten Materialien erfüllen die Anforderungen der EU-Richtlinie 2011/65/EU und der EU-Verordnung 2015/863 sowie UKSI 2012 Nr. 3032
Messlänge	257620 mm (bei der Option A mit verbesserter Schockfestigkeit siehe Bestellschlüssel auf Seite 13: 253760 mm)
Mechanische Montage	
Einbaulage	Beliebig
Montagehinweis	Beachten Sie hierzu die technischen Zeichnungen und die Betriebsanleitung (Dokumentennummer: <u>551902</u>)

Abschnitt "Elektrischer Anschluss" auf nächster Seite

Mit Standard-Monoflop von 16 µs
 Mit Positionsmagnet # 201 542-2
 Bei Kontakt zwischen Magnet, Magnethalter und Sensorstab darf die Geschwindigkeit des Magneten maximal 1 m/s betragen (Sicherheitsanforderung aufgrund ESD [Electro Static Discharge]) 131

Temposonics® TH SSI

Datenblatt


Elektrischer Anschluss	
Anschlussart	T-Serie Anschlussklemmen
Betriebsspannung	+24 VDC (-15/+20 %)
Restwelligkeit	\leq 0,28 V _{pp}
Stromaufnahme	100 mA typisch
Spannungsfestigkeit	700 VDC (0 V gegen Gehäuse)
Verpolungsschutz	Bis –30 VDC
Überspannungsschutz	Bis 36 VDC

ZERTIFIZIERUNGEN

Notwendige Zertifizierung	Ausführung E	Ausführung D	Ausführung G	Ausführung N
IECEx/ATEX (IECEx: Globaler Markt; ATEX: Europa)	Ex db eb IIC T4 Ga/Gb Ex tb IIIC T130°C Ga/Db Zone 0/1, Zone 21 -40 °C \leq Ta \leq 75 °C	Ex db IIC T4 Ga/Gb Ex tb IIIC T130°C Ga/Db Zone 0/1, Zone 21 -40 °C \leq Ta \leq 75 °C	Ex db IIC T4 Ga/Gb Ex tb IIIC T130°C Ga/Db Zone 0/1, Zone 21 -40 °C \leq Ta \leq 75 °C	Keine Ex-Zulassung
UK Ex (England, Wales und Schottland)	Ex db eb IIC T4 Ga/Gb Ex tb IIIC T130°C Ga/Db Zone 0/1, Zone 21 -40 °C \leq Ta \leq 75 °C	Ex db IIC T4 Ga/Gb Ex tb IIIC T130°C Ga/Db Zone 0/1, Zone 21 -40 °C \leq Ta \leq 75 °C	Ex db IIC T4 Ga/Gb Ex tb IIIC T130°C Ga/Db Zone $0/1$, Zone 21 -40 °C \leq Ta \leq 75 °C	Keine Ex-Zulassung
NEC (USA)	_	_	Explosionsgeschützt Class I Div. 1 Gruppen A, B, C, D T4 Class II/III Div. 1 Gruppen E, F, G T130°C -40 °C \leq Ta \leq 75 °C Druckfeste Kapselung Class I Zone 0/1 AEx d IIC T4 Class II/III Zone 21 AEx tb IIIC T130°C -40 °C \leq Ta \leq 75 °C	Keine Ex-Zulassung
CEC (Kanada)	_	_	Explosionsgeschützt Class I Div. 1 Gruppen B, C, D T4 Class II/III Div. 1 Gruppen E, F, G T130°C -40 °C \leq Ta \leq 75 °C Druckfeste Kapselung Class I Zone 0/1 Ex d IIC T4 Ga/Gb Class II/III Zone 21 Ex tb IIIC T130°C Db -40 °C \leq Ta \leq 75 °C	Keine Ex-Zulassung
Japanische Zulassung	Ex d e IIC T4 Ga/Gb Ex t IIIC T130°C Db Zone $0/1$, Zone 21 -40 °C \leq Ta \leq 75 °C	Ex d IIC T4 Ga/Gb Ex t IIIC T130°C Db Zone 0/1, Zone 21 -40 °C \leq Ta \leq 75 °C	Ex d IIC T4 Ga/Gb Ex t IIIC T130°C Db Zone 0/1, Zone 21 -40 °C ≤ Ta ≤ 75 °C	Keine Ex-Zulassung
CCC (China)	Ex d e IIC T4 Gb Ex tD A21 IP66/67 T130°C Zone 1, Zone 21 -40 °C \leq Ta \leq 75 °C	Ex d IIC T4 Gb Ex tD A21 IP66/67 T130°C Zone 1, Zone 21 -40 °C \leq Ta \leq 75 °C	Ex d IIC T4 Gb Ex tD A21 IP66/67 T130°C Zone 1, Zone 21 -40 °C ≤ Ta ≤ 75 °C	Keine Ex-Zulassung
PESO (Indien)	Ex db eb IIC T4 Ga/Gb Ex tb IIIC T130°C Ga/Db Zone 0/1, Zone 21 -40 °C \leq Ta \leq 75 °C	Ex db eb IIC T4 Ga/Gb Ex tb IIIC T130°C Ga/Db Zone 0/1, Zone 21 -40 °C \leq Ta \leq 75 °C	Ex db eb IIC T4 Ga/Gb Ex tb IIIC T130°C Ga/Db Zone $0/1$, Zone 21 -40 °C \leq Ta \leq 75 °C	Keine Ex-Zulassung

Abb. 3: Zertifizierungen

TECHNISCHE ZEICHNUNG

ANSCHLUSSOPTIONEN

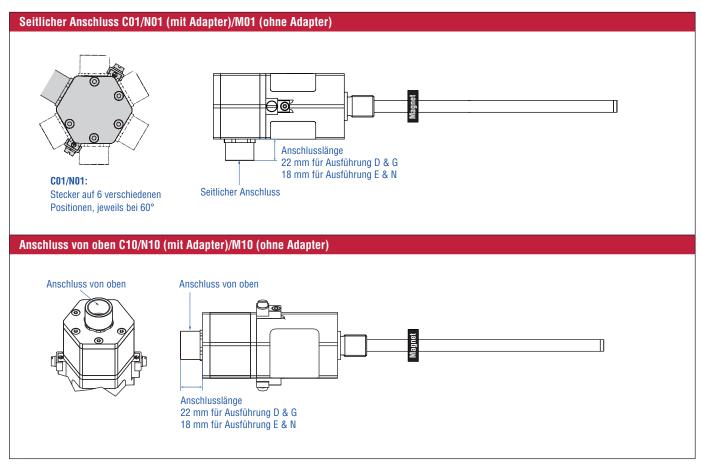


Abb. 5: Temposonics® TH Anschlussoptionen

Gewinde- Flanschtyp	Beschreibung	Gewindeflansch
F	Gewindeflansch mit flacher Flanschfläche Edelstahl 1.4404 (AISI 316L)	3⁄4"-16 UNF-3A
G	Gewindeflansch mit Dichtleiste Edelstahl 1.4404 (AISI 316L)	³ ⁄4"-16 UNF-3A
M	Gewindeflansch mit flacher Flanschfläche Edelstahl 1.4305 (AISI 303)	M18×1,5-6g
N	Gewindeflansch mit Dichtleiste Edelstahl 1.4305 (AISI 303)	M18×1,5-6g
S	Gewindeflansch mit flacher Flanschfläche Edelstahl 1.4305 (AISI 303)	3⁄4"-16 UNF-3A
T	Gewindeflansch mit Dichtleiste Edelstahl 1.4305 (AISI 303)	³ ⁄4"-16 UNF-3A
W	Gewindeflansch mit flacher Flanschfläche Edelstahl 1.4404 (AISI 316L)	M18×1,5-6g

Tabelle 1: TH Stabsensor Gewindeflansche

Datenblatt

ZONEN-UNTERTEILUNG

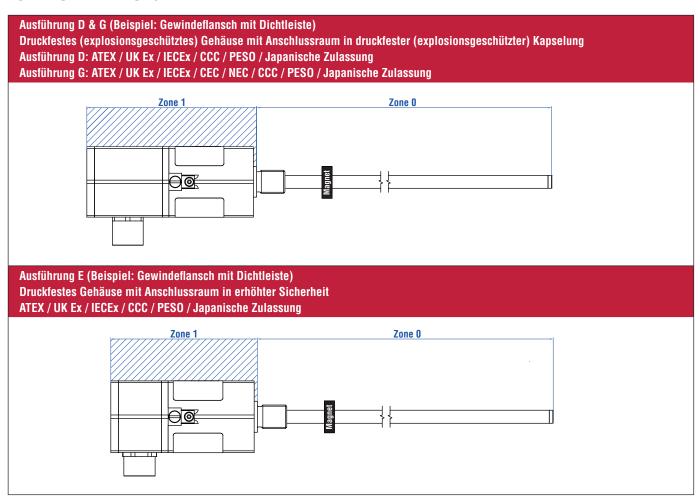


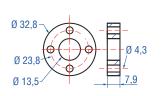
Abb. 6: Temposonics® TH Zonen-Unterteilung

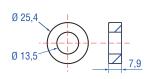
HINWEIS

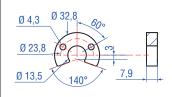
Dichten Sie den Sensor zwischen Zone 0 und Zone 1 gemäß Schutzart IP67 ab.

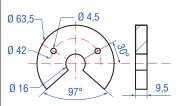
ANSCHLUSSBELEGUNG

Ausführung D & G geeignet für die Anschlussarten: CO1, C10, NO1, N10						
Signal + Spannungsversorgung						
Anschlussklemmen	Pin	Funktion				
	1	Daten (–)				
	2	Daten (+)				
	3	Takt (+)				
	4	Takt (–)				
<u>ਯ</u>	5	+24 VDC (-15/+20 %)				
<u>6</u> □0	6	DC Ground (0 V)				
	7	Kabelschirm				


Abb. 7: TH (Ausführung D & G) Anschlussbelegung (2,5 mm² Einzeladerquerschnitt)


Ausführung E & N geeignet für die Anschl	lussarten:	CO1, C10, M01, M10, N01, N10
Signal + Spannungsver	sorgung	
Anschlussklemmen	Pin	Funktion
	1	Daten (-)
	2	Daten (+)
	3	Takt (+)
400	4	Takt (–)
	5	+24 VDC (-15/+20 %)
700	6	DC Ground (0 V)
	7	Kabelschirm


Abb. 8: TH (Ausführung E & N) Anschlussbelegung (1,5 mm 2 Einzeladerquerschnitt)


GÄNGIGES ZUBEHÖR – Weiteres Zubehör siehe Broschüre 🗍 551444

Positionsmagnete

Ringmagnet OD33 Artikelnr. 201 542-2

Material: PA-Ferrit-GF20 Gewicht: Ca. 14 g

Flächenpressung: Max. 40 N/mm² Anzugsmoment für M4 Schrauben: 1 Nm Betriebstemperatur: -40...+105 °C

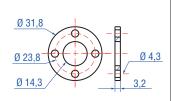
Ringmagnet OD25,4 Artikelnr. 400 533

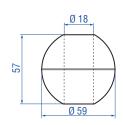
Material: PA-Ferrit Gewicht: Ca. 10 g

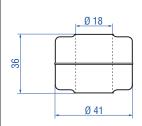
Flächenpressung: Max. 40 N/mm² Betriebstemperatur: -40...+105 °C

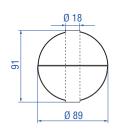
U-Magnet OD33 Artikelnr. 251 416-2

Material: PA-Ferrit-GF20 Gewicht: Ca. 11 g


Flächenpressung: Max. 40 N/mm² Anzugsmoment für M4 Schrauben: 1 Nm Betriebstemperatur: –40...+105 °C


U-Magnet OD63,5 Artikelnr. 201 553


Material: PA 66-GF30, Magnete vergossen Gewicht: Ca. 26 g Flächenpressung: 20 N/mm² Anzugsmoment für M4 Schrauben: 1 Nm Betriebstemperatur: –40…+75 °C


Magnetabstandhalter

Schwimmer 4

Magnetabstandhalter Artikelnr. 400 633

Material: Aluminium Gewicht: Ca. 5 g Flächenpressung: Max. 20 N/mm² Anzugsmoment für M4 Schrauben: 1 Nm

Schwimmer Artikelnr. 251 387-2

Material: Edelstahl (AISI 316L) Gewicht-Offset: Ja Druck: 22,4 bar Magnet-Offset: Nein

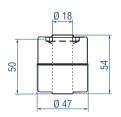
Spezifisches Gewicht: Max. 0,48 Betriebstemperatur: –40...+125 °C

Schwimmer Artikelnr. 200 938-2

Material: Edelstahl (AISI 316L) Gewicht-Offset: Ja Druck: 8,6 bar Magnet-Offset: Nein Spezifisches Gewicht: Max. 0,74

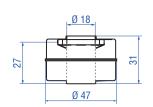
Betriebstemperatur: -40...+125 °C

Schwimmer Artikelnr. 251 469-2


Material: Edelstahl (AISI 316L) Gewicht-Offset: Ja Druck: 29,3 bar Magnet-Offset: Nein Spezifisches Gewicht: Max. 0,45

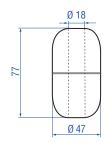
Spezifisches Gewicht: Max. 0,45 Betriebstemperatur: –40...+125 °C

Alle Maße in mm


- 4/ Stellen Sie sicher, dass das schwimmerspezifische Gewicht mindestens 0,05 weniger beträgt als das der Flüssigkeit, die als Sicherheitsspanne den Schwimmer bei Umgebungstemperatur umgibt
 - Für Schnittstellenmessung: Ein minimales spezifisches Schwerkraftdifferential von 0,05 ist zwischen den oberen und unteren Flüssigkeiten erforderlich
- Wenn der Magnet nicht dargestellt ist, befindet er sich auf der Schwimmer-Mittellinie
- Mit Hilfe eines Gewichts lässt sich der auf dem Sensorstab installierte Schwimmer schräg stellen oder neigen. Damit bleibt der Schwimmer zu jeder Zeit mit dem Sensorstab in elektrischem Kontakt, um einen Potenzialausgleich des Schwimmers sicherzustellen. Der Offset ist für Anlagen erforderlich, die den Ex-Schutz-relevanten Richtlinien entsprechen

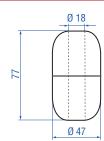
Schwimmer 5

Schwimmer 6 Artikelnr. 201 605-2


Material: Edelstahl 1.4571 (AISI 316 Ti) Gewicht-Offset: Ja Druck: 4 bar Magnet-Offset: Ja Spezifisches Gewicht: Max. 0,6 Betriebstemperatur: -40...+125 °C

Schwimmer 6 Artikelnr. 201 606-2

Gewicht-Offset: Ja Druck: 4 bar Magnet-Offset: Ja

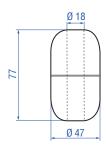

Spezifisches Gewicht: 0,93 ± 0,01 Betriebstemperatur: -40...+125 °C

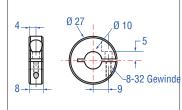
Schwimmer Artikelnr. 251 982-2

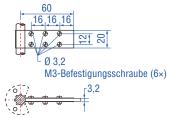
Material: Edelstahl 1.4571 (AISI 316 Ti) Material: Edelstahl (AISI 316L) Gewicht-Offset: Ja Druck: 29.3 bar Magnet-Offset: Nein

Spezifisches Gewicht: 0,93 ± 0,01 Betriebstemperatur: -40...+125 °C

Schwimmer Artikelnr. 251 983-2


Material: Edelstahl (AISI 316L) Gewicht-Offset: Ja Druck: 29.3 bar Magnet-Offset: Nein


Spezifisches Gewicht: 1,06 ± 0,01 Betriebstemperatur: -40...+125 °C


Schwimmer 5

Stoppkragen

Optionale Installations-Hardware

Schwimmer Artikelnr. 251 981-2

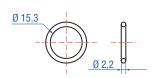
Material: Edelstahl (AISI 316L) Druck: 29,3 bar Spezifisches Gewicht: Max. 0,67 Betriebstemperatur: -40...+125 °C

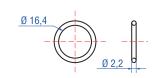
Stoppkragen für Ø 10 mm Sensorstäbe Artikelnr. 560 777

Endanschlag für Schwimmer Material: Edelstahl 1.4301 (AISI 304) Gewicht: Ca. 30 g

7/64" Inbusschlüssel notwendig

Befestigungslasche Artikelnr. 561 481


Anwendung: Zur Befestigung von Sensorstäben (Ø 10 mm) bei Nutzung eines U-Magnets oder Blockmagnets Material: Messing, unmagnetisch


Alle Maße in mm

- 5/ Stellen Sie sicher, dass das schwimmerspezifische Gewicht mindestens 0,05 weniger beträgt als das der Flüssigkeit, die als Sicherheitsspanne den Schwimmer bei Umgebungstemperatur umgibt
 - Für Schnittstellenmessung: Ein minimales spezifisches Schwerkraftdifferential von 0,05 ist zwischen den oberen und unteren Flüssigkeiten erforderlich
 - Wenn der Magnet nicht dargestellt ist, befindet er sich auf der Schwimmer-Mittellinie
- Mit Hilfe eines Gewichts lässt sich der auf dem Sensorstab installierte Schwimmer schräg stellen oder neigen. Damit bleibt der Schwimmer zu jeder Zeit mit dem Sensorstab in elektrischem Kontakt, um einen Potenzialausgleich des Schwimmers sicherzustellen. Der Offset ist für Anlagen erforderlich, die den Ex-Schutz-relevanten Richtlinien entsprechen
- 6/ Standardschwimmer der beschleunigt werden kann

0-Ringe

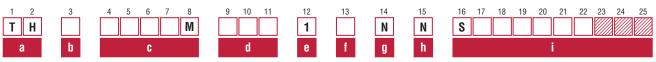
Programmier-Werkzeug 7

O-Ring für Gewindeflansch M18×1,5-6g Artikelnr. 401 133

Material: Fluoroelastomer Durometer: 75 ± 5 Shore A Betriebstemperatur: -40...+204 °C

O-Ring für Gewindeflansch ¾"-16 UNF-3A Artikelnr. 560 315

Material: Fluoroelastomer Durometer: 75 ± 5 Shore A Betriebstemperatur: -40...+204 °C


Programmier-Kit Artikelnr. 253 135-1

Lieferumfang:

- 1 × Schnittstellenwandler
- $1 \times Stromversorgung$
- 1 × Kabel (60 cm) mit M16-Buchse (7 pol.), gerade – D-Sub-Buchse (9 pol.), gerade

Betriebsanleitungen, Software & 3D Modelle finden Sie unter: www.temposonics.com

BESTELLSCHLÜSSEL

Optional

a B	auform
T	d Stab

b Design

Gehäusetyp 4:

TH Stabsensor mit Gehäusematerial Edelstahl 1.4305 (AISI 303) und Stabmaterial Edelstahl 1.4306 (AISI 304L)

- M Gewindeflansch mit flacher Flanschfläche (M18×1,5-6g)
- N Gewindeflansch mit Dichtleiste (M18×1,5-6g)
- S Gewindeflansch mit flacher Flanschfläche (3/4"-16 UNF-3A)
- T Gewindeflansch mit Dichtleiste (¾"-16 UNF-3A)

Gehäusetyp 4X:

TH Stabsensor mit Gehäusematerial Edelstahl 1.4404 (AISI 316L) und Stabmaterial Edelstahl 1.4404 (AISI 316L)

- F Gewindeflansch mit flacher Flanschfläche (¾"-16 UNF-3A)
- G Gewindeflansch mit Dichtleiste (¾"-16 UNF-3A)
- W Gewindeflansch mit flacher Flanschfläche (M18×1,5-6g)

				nge							
X)	X	X	X	M	00257	7620	mm			
Sta	anc	dar	d M	essl	äng	e (mm)		Bestells	chritte		
				_				_			

Standard Wessiange (IIIIII)	Destensumme	
25 500 mm	5 mm	
500 750 mm	10 mm	
7501000 mm	25 mm	
10002500 mm	50 mm	
25005000 mm	100 mm	
50007620 mm	250 mm	

Neben den Standardmesslängen weitere Längen in 5 mm-Schritten erhältlich.

d	Ans	chl	ussart
С	0	1	Seitlicher Anschluss mit $\frac{1}{2}$ "-14 NPT Gewinde (Alle Ausführungen)
С	1	0	Anschluss von oben mit $\frac{1}{2}$ "-14 NPT Gewinde (Alle Ausführungen)
M	0	1	Seitlicher Anschluss mit M16×1,5-6H Gewinde (Ausführungen E & N)
M	1	0	Anschluss von oben mit M16×1,5-6H Gewinde (Ausführungen E & N)
N	0	1	Seitlicher Anschluss mit M20×1,5-6H Gewinde (Alle Ausführungen)
N	1	0	Anschluss von oben mit M20×1,5-6H Gewinde (Alle Ausführungen)

	B 1 1 1
e	Betriebsspannung

- **1** +24 VDC (-15/+20 %)
- +24 VDC (-15/+20 %) beinhaltet verbesserte Schockfestigkeit (Messlänge 25...3760 mm)

Ausführung f (siehe "Zertifizierungen" auf Seite 5 für weitere Informationen)

- **D** Ex db und Ex tb (SW 55)
- E Ex db eb und Ex tb (SW 55)
- G Ex db und Ex tb (SW 60)

 US & CA Zulassung: Explosionsgeschützt (XP)

 (Hinweis: Gruppe A ist für Kanada nicht verfügbar)
- N Ohne Ex-Zulassung

g Funktionaler Sicherheitstyp

N Nicht zugelassen

h Zusätzliche Optionen

N Keine

Siehe nächste Seite

i Ausgang \$ (17) (18) (19) (20) (21) (22) (23) (24) (25) = Synchron Serielles Interface Datenlänge (Feld Nr. 17) 1 25 Bit **2** 24 Bit **3** 26 Bit Codierung (Feld Nr. 18) **B** Binär **G** Gray Auflösung (Feld Nr. 19) **1** 0.005 mm **2** 0.01 mm **3** 0,05 mm 4 0,1 mm 0,02 mm 5 **6** 0,002 mm 8 0,001 mm 9 0,0005 mm Filter (Feld Nr. 20) A Kein Filter + Fehlerunterdrückung (4 Zyklen) Kein Filter + Fehlerunterdrückung (8 Zyklen) 1 Standard (keine Filter) Rauschunterdrückungsfilter (8 Messwerte) Kein Filter + Fehlerunterdrückung (10 Zyklen) Rauschunterdrückungsfilter (8 Messwerte) + Fehlerunterdrückung (10 Zyklen) K Störimpulsfilter (8 Messwerte) N Störimpulsfilter (8 Messwerte) + Fehlerunterdrückung (10 Zyklen) Optionen (Feld Nr. 21, 22) Messrichtung vorwärts, asynchroner Modus 1 Messrichtung rückwärts, asynchroner Modus 0 2 Messrichtung vorwärts, synchroner Modus 1 0 Messrichtung vorwärts, asynchroner Modus Bit 25 = Alarm, Bit 26 = Parity Even

i Ausgang (Fortsetzung)

Messwertinhalt (optional: Feld Nr. 23)

Beachten Sie: In Feld 21 und 22 muss jeweils "9" gewählt sein

- 1 Positionsmessung
- 2 Differenzmessung 8
- 3 Geschwindigkeitsmessung
- Positionsmessung + Temperaturmessung (nur mit Datenlänge = 24 Bit)
- Differenzmessung * + Temperaturmessung (nur mit Datenlänge = 24 Bit)
- Geschwindigkeitsmessung + Temperaturmessung (nur mit Datenlänge = 24 Bit)

Messrichtung und Sync.-Modus (optional: Feld Nr. 24) Beachten Sie: In Feld 21 und 22 muss jeweils "9" gewählt sein

- 1 Messrichtung vorwärts, asynchroner Modus
- 2 Messrichtung vorwärts, synchroner Modus 1
- 3 Messrichtung vorwärts, synchroner Modus 2
- 4 Messrichtung vorwärts, synchroner Modus 3
- 5 Messrichtung rückwärts, asynchroner Modus
- 6 Messrichtung rückwärts, synchroner Modus 1
- 7 Messrichtung rückwärts, synchroner Modus 2
- 8 Messrichtung rückwärts, synchroner Modus 3

Diagnose (optional: Feld Nr. 25) Beachten Sie: In Feld 21 und 22 muss jeweils "9" gewählt sein

- Keine weiteren Optionen
- Zusätzlich Alarm Bit + Parity Even Bit (nicht mit Temperaturausgang kombinierbar, nur mit Datenlänge = 24 Bit)

HINWEIS

- Der minimale Abstand zwischen den Magneten (d.h. die Vorderseite eines Magneten zur Vorderseite des nächsten) beträgt 75 mm.
- Nutzen Sie f
 ür die Multipositionsmessung zwei gleiche Magnete.

LIEFERUMFANG

Zubehör separat bestellen

Betriebsanleitungen, Software & 3D Modelle finden Sie unter: www.temposonics.com

nutzen.

Tragen Sie die "9" jeweils in Feld Nr. 21 und 22 ein, um die optionalen Felder 23, 24, 25 für weitere Kombinationen zu

USA 3001 Sheldon Drive Temposonics, LLC Cary, N.C. 27513 Amerika & APAC Region Telefon: +1 919 677-0100

E-Mail: info.us@temposonics.com

DEUTSCHLAND Auf dem Schüffel 9

Temposonics 58513 Lüdenscheid GmbH & Co. KG Telefon: +49 2351 9587-0

EMEA Region & India E-Mail: info.de@temposonics.com

ITALIEN Telefon: +39 030 988 3819 Zweigstelle E-Mail: info.it@temposonics.com

FRANKREICH Telefon: +33 6 14 060 728

Zweigstelle E-Mail: info.fr@temposonics.com

UK Telefon: +44 79 21 83 05 86 Zweigstelle E-Mail: info.uk@temposonics.com

SKANDINAVIEN Telefon: +46 70 29 91 281

Zweigstelle E-Mail: info.sca@temposonics.com

CHINA Telefon: +86 21 3405 7850 Zweigstelle E-Mail: info.cn@temposonics.com

JAPAN Telefon: +81 3 6416 1063

Zweigstelle E-Mail: info.jp@temposonics.com

Dokumentennummer:

551950 Revision E (DE) 04/2023

temposonics.com